Sciences, Technologies, Santé

2024-2025

Master Physique appliquée et ingénierie physique Mécatronique, énergie et systèmes intelligents

Présentation

Le Master PAIP a pour objectif de former un flux de chercheurs ou d'ingénieurs de haut niveau dans quatre domaines spécifiques des sciences pour l'ingénieur (<u>Systèmes électroniques et microélectroniques</u>, <u>Mécatronique, énergie et systèmes intelligents</u>, <u>Modélisation mécanique pour l'énergie et l'environnement</u>, Modélisation numérique avancée (<u>MNA</u>)) ayant un spectre de connaissances spécialisées étendues allant de la physique aux applications et conceptions en ingénierie.

Compétences à acquérir :

- Être apte à utiliser, avec un esprit critique, les outils numériques (simulation, acquisition de données...) des sciences de l'ingénieur;
- Être capable de concevoir et développer un programme dans un langage adapté à l'objectif; de mettre en œuvre et de réaliser en autonomie une démarche expérimentale:
- Être apte à valider un modèle par comparaison de ses prévisions aux résultats expérimentaux et apprécier les limites de validité d'un modèle ;
- Être apte à élaborer une problématique et mobiliser les ressources pour documenter un sujet; à travailler de façon autonome, tout en s'intégrant dans une équipe.

Objectifs

Le parcours *mécatronique*, *énergie* et systèmes intelligents (MESI) fonctionne en formation classique et en formation par alternance.

Ce parcours a pour objectif de former des ingénieurs et des chercheurs de haut niveau dans les domaines de la mécatronique, de l'énergie et de l'intelligence artificielle, avec un spectre de connaissances spécialisées étendues en sciences pour l'ingénieur et en informatique. Les enseignements orientés usine 4.0, systèmes embarqués, réseaux, gestion d'énergies, intelligence artificielle (IA) appliquée à l'ingénierie, donnent des compétences très demandées dans l'industrie.

La mise en situation professionnelle est abordée tout au long de la formation, dans le cadre des projets de première année et de deuxième année, et du stage au semestre 4, pour ceux qui sont en formation classique, et dans le cadre des missions en entreprise pour ceux qui sont en formation par alternance. De plus, des enseignements en « préparation et valorisation de stage/missions en entreprise » sont dispensés. Les enseignements sont dispensés essentiellement en français, quelques UE sont prévues en anglais.

Insertion professionnelle

Consultez le taux d'insertion professionnel d'après les enquêtes de l'ORESIPE.

Métiers visés

- Responsable de recherche-développement
- Ingénieur / Ingénieure d'études-recherche-développement
- Directeur / Directrice de production industrielle
- Responsable du développement industriel

Pour connaître en détail l'insertion professionnelle de nos diplômés, consultez <u>cette</u> <u>page</u>.

- Ingénieur / Ingénieure systèmes mécatroniques
- Ingénieur / Ingénieure instrumentation
- Ingénieur / Ingénieure en automatismes en industrie
- Ingénieur / Ingénieure robotique
- Ingénieur / Ingénieure en systèmes électriques et électroniques

Composante	Faculté de physique et ingénierie
<u> </u>	racate de physique et ingemene
Langues d'enseignement	Français
Niveau d'entrée	BAC +3
Durée	2 ans
ECTS	120
Volume global d'heures	1006
Formation à distance	Non, uniquement en présentiel
Régime d'études	 FI (Formation initiale) Alternance : contrat d'apprentissage Alternance : contrat de professionnalisation
Niveau RNCP	Niveau 7
RNCP	RNCP38983 : Master Physique appliquée et ingénierie physique
Disciplines	 Mécanique, génie mécanique, génie civil Informatique
Secteurs d'activité	 Fabrication de produits informatiques, électroniques et optiques Enseignement Industrie automobile
Code ROME	Ingénieur / Ingénieure R&D en industrie Ingénieur / Ingénieure méthodes e process Ingénieur / Ingénieure d'analyse industrielle Responsable qualité en industrie Ingénieur / Ingénieure de maintenance industrielle
Stage	Non prévu
Stage à	Non prévu
l'étranger	
l'étranger Alternance	Oui

- Ingénieur / Ingénieure en énergies et énergies renouvelable
- Ingénieur / Ingénieure en développements et applications informatiques
- Ingénieur / Ingénieure en mécanique et génie mécanique / conception
- Enseignant / Enseignante en sciences pour l'ingénieur
- Ingénieur / Ingénieure de recherche scientifique
- etc.

Les + de la formation

- Différents industriels, travaillant en R&D, interviennent dans cette formation au travers de cours et de séminaires scientifiques et technologiques de haut niveau.
- Cette formation orientée usine 4.0, systèmes embarqués, réseaux, gestions d'énergie, intelligence artificielle (IA) donne des compétences très demandées dans l'industrie.

Critères de recrutement

Admission sur dossiers.
 Candidatures via la plateforme <u>MonMaster (M1)</u>, <u>Ecandidat (M2)</u> ou via la plateforme « <u>Étude en France</u> » pour les étudiants étrangers des pays partenaires. Niveau B2 requit en langue française.

• Niveau d'entrée en M1:

Licence, Bachelor universitaire de technologie (B.U.T.), Licence Professionnelle. Disciplines: Sciences pour l'ingénieur (domaines de l'EEA, de la mécatronique, de la mécanique, de l'informatique, du génie industriel, des énergies/énergies renouvelables, de l'industrie 4.0, ...), Physique Appliquée; Informatique.

Rythme d'alternance	Formation en alternance dès la 1e année de master
	En moyenne :
	1ère année : 3 jours à l'Université / 2 jours en entreprise par semaine
	2 ème année : 1 semaine à l'Université / 1 semaine en entreprise
Type de contrat d'alternance	Contrat d'apprentissageContrat de professionnalisation

Droits de scolarité

Pour connaître les droits de scolarité, <u>consultez la page dédiée</u> sur le site de l'Université de Strasbourg.

Contacts

Responsable(s) de parcours

- Pierre-Paul Zeil
- <u>Dominique Knittel</u>

Niveau d'entrée en M2 :

Avoir validé une formation bac+4 ou bac+5 en Sciences pour l'ingénieur (domaines de l'EEA, de la mécatronique, de la mécanique, de l'informatique, du génie industriel, des énergies/énergies renouvelables, de l'industrie 4.0, ...), Physique Appliquée; Informatique, etc..

Candidater

Pour connaître les modalités de candidature, consultez la page dédiée sur le site de l'Université de Strasbourg.

Prérequis obligatoires

Les prérequis concernant les matières ou disciplines sont les concepts de base des systèmes électroniques/électriques et de l'informatique.

Prérequis recommandés

- Mention(s) de licence(s) conseillée(s) pour accéder au M1:
 - Sciences pour l'ingénieur.
 - Electronique, énergie, automatique.
- Autres pré-requis (disciplines, matières, enseignements, recommandés):
 - Bases de physique générale.
 - Bases en électronique analogique/numérique ou en mécanique.
 - Bases en informatique et langage de programmation.
- Modalités d'examen des candidatures : Dossier.
- Calendrier de la procédure d'admission : les candidatures ouvrent en avril.
- Plus d'informations sur le site de la Faculté.

Programme des enseignements

Mécatronique, énergie et systèmes intelligents

Master 1 - Physique appliquée et ingénierie physique - Mécatronique, énergie et systèmes intelligents

		СМ	TD	TP	CI
UE 1 - Semestre 1 - Gestion de projet, communication et veille scientifique	3 ECTS	-	-	-	-
Gestion de projet, communication et veille scientifique		10h	16h	-	-
UE 2 - Semestre 1 - Numerical resolution techniques for engineering	3 ECTS	-	-	-	-
Numerical resolution techniques for engeneering		12h	10h	8h	-
UE 3 - Semestre 1 - Langues	3 ECTS	-	-	-	-
Anglais Lansad - Semestre impair		_	20h	-	-
UE 4 - Semestre 1 - Electronique analogique pour systèmes mécatroniques	3 ECTS	-	-	-	-
Electronique analogique pour systèmes mécatroniques		-	-	8h	201
UE 5 - Semestre 1 - Actionneurs électriques et capteurs	3 ECTS	-	-	-	-
Actionneurs électriques		-	-	12h	18
Capteurs		-	-	-	10
UE 6 - Semestre 1 - Electronique numérique - VHDL	3 ECTS	-	-	-	-
VHDL		14h	-	-	-
TP VHDL		-	-	16h	-
UE 7 - Semestre 1 - Modelling of mechanical systems	3 ECTS	-	-	-	-
Modelling of mechanical systems		14h	10h	8h	-
UE 8 - Semestre 1 - Dimensionnement des éléments mécaniques	3 ECTS	-	-	-	-
Dimensionnement des éléments mécaniques		-	-	-	28
UE 9 - Semestre 1 - Signaux et commande	3 ECTS	-	-	-	-
Traitement du signal et commande		-	-	12h	18
UE 10 - Semestre 1 - Travaux en informatique et mécatronique	3 ECTS	-	-	-	-
Informatique langage C (sur système embarqué)		-	-	12h	2ł
Informatique language Python (sur système embarqué)		-	-	12h	2ł
Liste UE 10 fonction du statut de l'édudiant - choisir 1 parmi 2					
GR 1 : étudiants en FI - projet partie 1		-	-	50h	-
GR 2 : étudiants en FA - missions en entreprise : partie 1		_	_	20h	_

Semestre 2 - Mécatronique, énergie et systèmes intelligents						
		СМ	TD	TP	CI	
UE 1 - Semestre 2 - Introduction à la simulation multiphysique	3 ECTS	-	-	-	-	
Simulation multiphysique		10h	-	-	-	

	СМ	TD	TP	CI
TP de simulation multiphysique	-	-	24h	-
UE 2 - Semestre 2 - UE à choix selon statut 6 ECTS	-	-	-	-
UE 2 - Semestre 2- liste - Choisir 1 parmi 2				
Etudiants en FA : missions en entreprise	10h	_	20h	-
Etudiants en FI : Travail d'étude et de recherche	-	-	60h	-
UE 3 - Semestre 2 - Finite elements for mechanical and thermal systems 3 ECTS	-	-	-	-
Finite elements	8h	-	8h	-
Thermal systems	8h	-	8h	-
UE 4 - Semestre 2 - Mesure et IA 3 ECTS	-	-	-	-
Mesure et instrumentation (Labview)	-	-	12h	4h
Intelligence artificielle et data mining	8h	-	16h	-
UE 5 - Semestre 2 - Automatisme 3 ECTS	-	_	-	-
Automatisme	-	-	16h	10h
UE 6 - Semestre 2 - Systèmes numériques embarqués 3 ECTS	-	_	-	-
Systèmes numériques embarqués	6h	-	24h	-
UE 7 - Semestre 2 - Gestion et qualité de l'énergie électrique 3 ECTS	-	_	-	-
Gestion et qualité de l'énergie électrique	-	_	8h	20h
UE 8 - Semestre 2 - Energies renouvelables 3 ECTS	-	-	-	-
Energies renouvelables	20h	-	8h	-
UE 9 - Semestre 2 - DAO et CAO de systèmes 3 ECTS	-	-	-	-
DAO et CAO de systèmes	-	-	28h	-

Master 2 - Physique appliquée et ingénierie physique - Mécatronique, énergie et systèmes intelligents

		СМ	TD	TP	CI
UE 1 - Semestre 3 - Assurance qualité	3 ECTS	-	-	-	-
Assurance qualité		14h	10h	-	-
UE 2 - Semestre 3 - Langues	3 ECTS	-	-	-	-
Anglais Lansad - Semestre impair		-	20h	-	-
UE 3 - Semestre 3 - Mécanique systèmes flexibles et matériaux	3 ECTS	-	-	-	-
Matériaux		_	_	-	10h
Mécanique des systèmes flexibles		-	-	16h	4h
UE 4 - Semestre 3 - Commande	3 ECTS	-	-	-	-
Commande avancée et optimisation de commande		-	-	8h	10h
Supervision		-	-	12h	2h
Initiation robotique et ROS		_	_	8h	4h

		СМ	TD	TP	CI
UE 5 - Semestre 3 - Intelligence et réseaux	3 ECTS	-	-	-	-
Diagnostic et maintenance prédictive par IA		_	-	16h	4h
Réseaux, systèmes connectés, initiation cyber-sécurité		-	-	16h	12h
UE 6 - Semestre 3 - Processeurs embarqués	3 ECTS	-	-	-	-
Architectures des processeurs		12h	-	-	-
Systèmes d'exploitation embarqués		10h	-	8h	-
UE 7 - Semestre 3 - Conversion électromécanique	3 ECTS	-	-	-	-
Conversion électromécanique		_	-	8h	16h
UE 8 - Semestre 3 - Electronique de puissance	3 ECTS	-	-	-	-
Electronique de puissance		_	-	8h	16h
UE 9 - Semestre 3 - Hackathon et projet recherche ou entreprise	6 ECTS	-	-	-	-
Hackathon (IA, Industrie 4.0,)		-	-	10h	-
Activité fonction du statut de l'étudiant - choisir 1 parmi 2					
FI : Projet de recherche (TER 2)		_	-	80h	-
FA : Évaluation missions en entreprise (semestre 3) et séminaires		30h	-	30h	-

Semestre 4 - Mécatronique, Energie et Systèmes Intelligents							
		СМ	TD	TP	CI		
UE 1 - Semestre 4 - Préparation et valorisation stage ou mission	3 ECTS	-	-	-	-		
Recherche de stage ou préparation apprentissage		-	-	-	-		
Selon statut étudiant - choisir 1 parmi 2							
FA : Préparation des missions		_	20h	_	-		
FI : Recherche et préparation de stage		-	12h	-	-		
Valorisation de stage ou apprentissage		-	24h	-	-		
UE 2 - Stage	27 ECTS	-	-	-	-		
Stage		-	-	-	-		